Los falsos positivos y los verdaderos positivos de la ciberseguridad

Cuando las herramientas de seguridad identifican amenazas, en algunas organizaciones se despliega una serie de recursos; sin embargo, no siempre se trata de amenazas reales sino de falsos positivos que en realidad son inofensivos, pero aun así consumen recursos importantes, por lo que se requiere de métodos de análisis estadístico y aprendizaje automático para proteger las redes, con el entendido de que ni siquiera los mejores algoritmos son omnipotentes.
Por Iván Sánchez
Cuando un sistema activa una alarma, el equipo de seguridad debe investigarla. Pero si se trata de una falsa alarma —es decir de falsos positivos— los expertos tienen que perder el tiempo ante una amenaza que no existe. Esto cuesta tiempo y recursos, que en casos extremos luego faltan en ataques reales.

Si se producen falsos positivos de forma continua y frecuente, también puede ocurrir que los equipos de seguridad descuiden o incluso ignoren los mensajes de alarma. En última instancia, se pasan por alto las amenazas reales. Esto compromete la eficacia de las medidas de seguridad.

Por lo tanto, los falsos positivos pueden tener efectos negativos reales en la seguridad de la red, por lo que a menudo se utilizan como una métrica importante para los equipos de ciberseguridad. ¿Pero qué pasa si esta cifra es exagerada?

¿FALSA ALARMA O FALSO INDICADOR?
Para ilustrar esto tomemos un ejemplo del área DNS. Imaginemos un algoritmo que detecta el 80% de todos los dominios maliciosos con los que se comunica una red. También estima incorrectamente que el 5% de los dominios legítimos son maliciosos. Aplicamos este algoritmo a un conjunto de datos que contiene un total de 50 dominios, de los cuales el 20%, es decir 10, son realmente maliciosos. Luego, el algoritmo ofrece los siguientes resultados:

•8 de los 10 dominios defectuosos están marcados como peligrosos.
•2 de los 40 dominios legítimos están erróneamente marcados como peligrosos.
•2 de los 10 dominios maliciosos no están marcados erróneamente como peligrosos.
•38 de los 40 dominios legítimos están marcados como no peligrosos.

En este escenario ficticio, el algoritmo encuentra un total de 10 dominios maliciosos, dos de los cuales son realmente legítimos. La tasa de falsos positivos en este ejemplo es 2 /10, es decir, 20%. A partir de la descripción del algoritmo sería erróneo suponer que la tasa es del 5%. Con sólo 50 dominios esto todavía es manejable.

Sin embargo, en realidad las redes se ocupan de muchos dominios y muchas veces con cifras de millones. Además, la proporción de dominios defectuosos suele estar muy por debajo del 10%. Por lo tanto, no es raro que el número de falsos positivos supere el número de verdaderos positivos.

¿Qué pasa si la red del ejemplo anterior no tiene 50 dominios para verificar, sino un millón? El algoritmo devuelve entonces los siguientes números:

•40,000 de los 50,000 dominios maliciosos están marcados como peligrosos.
•47,500 de los 950,000 dominios legítimos están incorrectamente marcados como peligrosos.
•10,000 de los 50,000 dominios maliciosos están marcados incorrectamente como no peligrosos.
•902,500 de los 950,000 dominios legítimos están marcados como no peligrosos.

En este ejemplo, la tasa de falsos positivos es del 54%, lo que ya supera a los verdaderos positivos. Pero ¿cómo se obtienen esas cifras? La respuesta es bastante simple. Los falsos positivos aumentan proporcionalmente al número de objetos. En otras palabras, cuanto mayor sea el conjunto de dominios legítimos, más falsos positivos se producirán. Además, la tasa se ve afectada por el desequilibrio entre dominios legítimos y maliciosos. Este es un ejemplo clásico de propagación de errores, que ocurre una y otra vez en ciberseguridad cuando el volumen es grande y el desequilibrio entre actividades legítimas y maliciosas extremo.

EL IMPACTO ES LO QUE CUENTA
Muchos de los proveedores de soluciones de seguridad de red utilizan métodos de análisis estadístico y aprendizaje automático para proteger a las redes de ataques. Sin embargo, tanto los expertos como los usuarios deben comprender que ni siquiera los mejores algoritmos son omnipotentes.

El rendimiento del análisis de amenazas varía según el entorno. Por lo tanto, la tasa de falsos positivos no es necesariamente el indicador más significativo. Lo que importa es qué tan grande es el impacto real en la red y los recursos.

En ese sentido, los impactos positivos y negativos deben considerarse como una medida de éxito, en lugar de intentar cuantificar únicamente los falsos positivos. Además, cada entorno es diferente, por lo que las soluciones de seguridad siempre deben adaptarse al entorno, sólo así se podrán satisfacer las necesidades individuales.

Por lo tanto, los expertos en seguridad deberían examinar muy de cerca las cifras clave detrás de los algoritmos. Actualmente ya son posibles tasas de falsos positivos del 0,00015% mediante el uso de múltiples algoritmos estadísticos y no estadísticos, aunque también son útiles otros métodos, como la estrategia del ser humano en el circuito y el uso de múltiples niveles de procesamiento para reducir el ruido generado por falsos positivos que tiene un impacto real en los equipos de seguridad.
*VP Sales Manager LATAM de Infoblox.
isanchez@infoblox.com
Las opiniones expresadas en este artículo son de exclusiva responsabilidad del autor y no representan la opinión del IMEF.

Suscríbete a IMEF News

Análisis y opinión de expertos en economía, finanzas y negocios para los tomadores de decisiones.

Te puede interesar

Hay 1.5 millones de plazas laborales disponibles, ¿por qué no se ocupan?

En octubre se rompió récord en generación de empleos formales, de acuerdo con las cifras del IMSS. Hay 1.5 millones de plazas laborales disponibles, ¿por qué no se ocupan?

¿Tiene estrategia la política exterior de Trump?

Habrá varios lectores que aseveren que uno de los pilares de MAGA (“Make America Great Again”) es el aislacionismo internacional de Estados Unidos. En realidad, ésa es una concepción errónea. La idea central se encuentra en “America First” que implica redefinir los términos del involucramiento americano en los asuntos globales.

Encuesta: ¿Cómo son vistas las decisiones arancelarias de Trump?

En febrero el área de encuestas del IMEF realizó un sondeo entre sus asociados para conocer su percepción sobre la aplicación de aranceles de parte de Estados Unidos. Los datos muestran una tendencia de desaprobación y desconfianza, con énfasis en la percepción desfavorable posterior a sus discursos.

Riviera Maya vs. República Dominicana: ¿México pierde cuota de mercado turístico?

En el cambiante escenario del Caribe, la Riviera Maya está perdiendo terreno frente a un competidor cada vez más sólido: República Dominicana. La competencia no se limita a la atracción del turismo; se extiende a la captación de inversión extranjera y capital.

Hackers roban 67 mdp a bancos de México: ¿Qué sabemos de los ataques cibernéticos?

En lo que va del 2023, Banxico ha registrado cuatro casos de ataques cibernéticos relevantes dirigidos a cajeros automáticos y transferencias electrónicas.

Ajuste internacional complejo y prolongado

La economía mundial se encuentra en una encrucijada difícil, ya que se han conjugado varios factores, entre ellos, la permanencia de crecientes gastos sociales que está llevando a un endeudamiento público más allá de lo sanamente responsable.

Dos meses que pueden cambiar a México

En dos meses, lapso que parece breve, se pueden gestar algunos cambios que modifiquen al país con mayor profundidad que durante todo el tiempo que ha transcurrido de este sexenio.